The carcinine transporter CarT is required in Drosophila photoreceptor neurons to sustain histamine recycling
نویسندگان
چکیده
Synaptic transmission from Drosophila photoreceptors to lamina neurons requires recycling of histamine neurotransmitter. Synaptic histamine is cleared by uptake into glia and conversion into carcinine, which functions as transport metabolite. How carcinine is transported from glia to photoreceptor neurons remains unclear. In a targeted RNAi screen for genes involved in this pathway, we identified carT, which encodes a member of the SLC22A transporter family. CarT expression in photoreceptors is necessary and sufficient for fly vision and behavior. Carcinine accumulates in the lamina of carT flies. Wild-type levels are restored by photoreceptor-specific expression of CarT, and endogenous tagging suggests CarT localizes to synaptic endings. Heterologous expression of CarT in S2 cells is sufficient for carcinine uptake, demonstrating the ability of CarT to utilize carcinine as a transport substrate. Together, our results demonstrate that CarT transports the histamine metabolite carcinine into photoreceptor neurons, thus contributing an essential step to the histamine-carcinine cycle.
منابع مشابه
Histamine Recycling Is Mediated by CarT, a Carcinine Transporter in Drosophila Photoreceptors
Histamine is an important chemical messenger that regulates multiple physiological processes in both vertebrate and invertebrate animals. Even so, how glial cells and neurons recycle histamine remains to be elucidated. Drosophila photoreceptor neurons use histamine as a neurotransmitter, and the released histamine is recycled through neighboring glia, where it is conjugated to β-alanine to form...
متن کاملNeurons to Sustain Histamine Recycling 2 3 4
19 20 21 Running title: Carcinine transport in histamine recycling 22 23 24 25 Abstract 28 Synaptic transmission from Drosophila photoreceptors to lamina neurons requires 29 recycling of histamine neurotransmitter. Synaptic histamine is cleared by uptake into glia and 30 conversion into carcinine, which functions as transport metabolite. How carcinine is transported 31 from glia to photorecepto...
متن کاملDrosophila Vision Depends on Carcinine Uptake by an Organic Cation Transporter.
Recycling of neurotransmitters is essential for sustained neuronal signaling, yet recycling pathways for various transmitters, including histamine, remain poorly understood. In the first visual ganglion (lamina) of Drosophila, photoreceptor-released histamine is taken up into perisynaptic glia, converted to carcinine, and delivered back to the photoreceptor for histamine regeneration. Here, we ...
متن کاملThe Role of Carcinine in Signaling at the Drosophila Photoreceptor Synapse
The Drosophila melanogaster photoreceptor cell has long served as a model system for researchers focusing on how animal sensory neurons receive information from their surroundings and translate this information into chemical and electrical messages. Electroretinograph (ERG) analysis of Drosophila mutants has helped to elucidate some of the genes involved in the visual transduction pathway downs...
متن کاملThe β-alanine transporter BalaT is required for visual neurotransmission in Drosophila
The recycling of neurotransmitters is essential for sustained synaptic transmission. In Drosophila, histamine recycling is required for visual synaptic transmission. Synaptic histamine is rapidly taken up by laminar glia, and is converted to carcinine. After delivered back to photoreceptors, carcinine is hydrolyzed to release histamine and β-alanine. This histamine is repackaged into synaptic v...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2015